Tag Archive for: Distal Femur Fractures

Management options and Decision making algorithm for Distal Femur fractures

 Volume 2 | Issue 1 | Jan-Apr 2016 | Page 7-12|Mohsin e Azam


Author: Mohsin-e-Azam[1]

[1] iCare Clinics, Dubai UAE.

Address of Correspondence

Dr. Mohsin e Azam,
.Dr Mohsin-e-Azam
MBBS, MCPS, FCPS, Dip IT, Dip Bioethics
Specialist Orthopaedic Surgeon
iCare Clinics, Dubai UAE
Email:  mohsindoc@gmail.com


Abstract

Distal femur is a complex fractures and most of times a personalized approach is needed for these fractures. Over a period of time variety of approaches and implants have been used for these fractures. The guiding principles for achieving good prognosis is meticulous surgical technique, preservation of fracture biology, restoration of articular surface and overall alignment of the limb. In case of geriatric fractures factors like long terms health and functional goals also need to be taken into consideration in planning treatment. This review focusses on providing an overview of the management options and lay down the premise for the symposium
Keywords: .Distal femur fractures, surgical management, decision making


Introduction

Distal femur fractures have been reported to account for between 4% and 6% of all femoral fractures[1, 2]. The distribution of fractures of this region is bimodal both in terms of age and mechanism. Distal femur fractures can result from either high-energy trauma or low-energy trauma. High-energy trauma such as road traffic accidents and sports accidents are more likely in men ages 15–50, whereas low-energy trauma such as falls from standing height at home are more likely to lead to distal femur fractures in women aged 50 and above. There is also the addition of the peri-prosthetic fracture group in the geriatric population with osteoporosis. In both cases axial loading of the leg is the most common mechanism of injury[2]. The fractures can be open or closed, due to their peri-articular location, can also have associated injuries of the patella and tibia. Proper antibiotic prophylaxis is essential to reduce the rate of infection in open fractures[3]. In cases of high energy trauma there can be associated neurovascular injury. Hence the neurovascular status of the extremity should be monitored closely in the perioperative and postoperative period. For evaluation of the fractures AP and Lateral X-Rays are obtained. Where articular comminution is present CT (computerized tomography) can aid in better understanding of the fracture geometry. 3D reconstruction images can further clarify complex articular injuries and coronal plane fractures[4]. As for all peri-articular fractures the restoration of articular surface and joint alignment requires thorough assessment of the fracture character and proper preoperative planning. Failing to do so can result into severe permanent disability specially if there is loss of knee stability and function[5].
Classically, the treatment of choice for management of femoral fractures, including supracondylar fractures, was with different types of splints. In 1907 and 1909, Steinmann and Kirschner, respectively, developed the first traction treatment modalities with the use of pins or wires under tension. A single pin is usually placed in proximal tibia when applying skeletal traction for treating these fractures[6].
Retrospective reports during the 1960’s by Stewart et al. (1966) and Neer et al. (1967) favored simple non-operative methods of treatment. However, in the next decade the pendulum started to shift as new surgical methods and materials improved the results of surgery according to Miiller et al[1].
Progressively with time better understanding of anatomy and fracture characteristics led to improved implant designs and improved outcomes. The modalities for fixation of distal femoral fractures can be broadly classified into external fixation, Conventional plating (sliding screws, blade plates and Dynamic compression plates), Locked plate fixation, Intramedullary nailing and arthroplasty.

Non Operative Management

The options of non-operative management are splint, cast and traction. Thomas and Meggit compared different non operative modalities and observed that there was no significant difference in the malunion rates between the splint versus the cast brace treatment. Although there was delayed union associated with splints[7]. Butt et al. evaluated operative (dynamic condylar screw) versus conservative (skeletal traction) treatment in a randomized control trial for displaced distal femur fracture in elderly patients. Good or excellent results were obtained in 53% of the operative patients versus 31% in the conservative group. The non-operative group had an increased risk for deep vein thrombosis (despite anticoagulation therapy), pulmonary and urinary tract infections, non-unions, mal-unions, knee joint stiffness, skin related complications and pin tract infections[8]. Therefore the application of the non-operative treatment is limited to only certain conditions like non-displaced fractures, bed bound patients, patients unfit to undergo surgery due to comorbidities[9].

Operative Management
Fractures of the distal femur can be managed successfully with surgery. A good result depends on identification of all fragments, adequate repair of soft tissue, appropriate bone grafting, meticulous inter-fragmentary compression, and complete reduction of the joint space[10].
Indications for operative management include open fractures, displaced fractures, intra-articular fractures, fractures associated with neurovascular compromise, ipsilateral lower extremity fractures, irreducible fractures, pathologic fractures and non-unions.
The implant and technique used is determined by fracture pattern, bone quality, the hemodynamic stability of the patient, and the skill and experience of the surgeon[11].

Surgical Techniques

ORIF Approaches
Surgical approach usually depends upon the character of the fracture and the choice of the implant. Most commonly performed approach is the lateral approach.

Lateral Approach
This approach is employed for fractures without articular involvement or simple articular extension. It is performed in the supine position with the knee flexed to 30 degrees. Flexing the knee releases the traction caused by gastrocnemius muscle and prevents extension of the distal fragment. This approach can be extended as required proximally to mid-thigh and to the lateral parapatellar region distally. The approach relies on an atraumatic elevation of the vastus lateralis from the lateral aspect of the distal femur, and a lateral arthrotomy for joint access. Articular reduction and lateral plate placement can both be achieved with the same approach. When extended proximally this approach can provide access to the entire length of the femoral shaft. Fractures of the medial femoral condyle and more complex fractures can also be handled with a lateral approach[12]. Occasionally a medial para-patellar approach may be utilized to provide good view of the articular surface of the distal femur.

Medial parapatellar
A medial approach to the distal femur may be used for a medial distal femoral fracture or in case of a coronal split (Hoffa-type fracture) of the femoral condyles. It can also be used in conjunction with lateral exposure when double plating of the distal end of the femur is indicated for severe supracondylar comminution or for bone defects requiring additional medial stabilization and in patients with complex combined supracondylar and intracondylar fractures. The vastus medialis is reflected anteriorly to expose the distal medial shaft of the femur. Structures to be protected in this approach are medial collateral ligament, the medial meniscus and the femoral artery and vein as they leave the adductor canal[13].

Surgical Algorithm
For extra articular distal femur fractures a minimally invasive surgical approach can be utilized, this approach preserves the fracture biology. This can be achieved by minimal invasive plate osteosynthesis or retrograde intramedullary nailing. Either approach allows for bridging of the fracture. This approach is superior to open reduction and internal fixation of intermediate fragments where blood supply may be impaired. Compression mode plating has been found superior to bridging mode and should be performed where feasible[14].
For simple articular fractures open reduction of the affected femoral condyle is required to achieve anatomic reduction. Lag screws can be used to reduce the articular fragments followed by a plate for osteosynthesis.
In case of the comminuted articular fractures visualization of the knee joint is required in order to reduce and anatomically reconstruct the articular surface. Temporary k-wire fixation can be performed followed by placement of lag screws using 3.5 mm screws. Afterwards the articular bloc is fixed to the femoral shaft. No matter which kind of fixation is performed it is imperative to restore axial alignment, length and rotation of the lower limb for good functional recovery[15].
In severely comminuted fractures a spanning external fixator may be used as a salvage procedure. The external fixator may be applied for several weeks in order to achieve adequate conditions for later total knee arthroplasty[16].

External Fixation
External fixation is commonly used as a temporary measure of these fractures, in particular for displaced intra-articular fractures. Mainly used when there is an open fracture, significant comminution, bone loss, vascular compromise or extensive soft tissue damage. A bilateral fracture or a floating knee are also examples of complex fractures requiring external fixation. Proper placement of pins away from the zone of injury will reduce the risk of infection and maintain the integrity of the soft tissue for definitive management at a later stage[17].
With Monolateral fixators, it is difficult to control alignment, the stability is often poor, there is no fixation of the articular component and stabilization of the fracture requires bridging the knee, which increases the risk of stiffness. As a damage control measure external fixation provides opportunity for medical management, reduction in pain and facilitates nursing care till definitive treatment can be performed. Severely comminuted fractures can also be treated definitively with tensioned external fixation devices such as the Ilizarov fixator.
Oh et al. reported results of a series of 59 complex intra-articular fractures with temporary bridging external fixation. There were seven complications including four that developed in distal femoral fractures which were infection and the unsuccessful control of leg length[18]. Parekh et al. reported good results in staged management of complex intra-articular fractures around the knee, with 16 distal femoral fractures in a series of 47 cases[19]. Zlowodzki et al. reported an average 7.2% nonunion rate, 1.5% rate of fixation failure, 4.3% rate of deep infection, and 30.6% need for secondary surgical procedures when distal femoral fractures were treated with external fixation[20]. Arazi et al. evaluated 14 complex fractures treated with Ilizarov external fixator and found that union occurs around 16 weeks with a mean ROM of 105 degrees at the knee. With the only complication being an infected nonunion, they concluded that the fixator is a safe option that provides adequate stability[21]. Kumar and colleagues examined the outcomes of the Ilizarov fixator in open supracondylar fractures and found that union occurred much later at 39 weeks, with at least 4 cm of shortening noted in 40% of fractures and pin-track infections in 21% of patients[22].

Conventional Plate Systems
After the 70s, better results to support ORIF in fractures of the distal femur were reported in literature[1, 23] Shahcheraghi et. al. compared ORIF with closed reduction directly, preferred ORIF with good or excellent clinical results registered, 81% open versus 42% closed and a significantly reduced malunion rate, 3% open versus 37% closed[15]. With the availability of the fixed angle blade plate the care for the distal femur fracture got transformed. This construct provided polyaxial stability and inherent rigidity. Earlier designs constituted an angled side plate that could be impacted into the distal femur and fixed to the distal femur by the precontured region of the plate across the metaphyseal flare. The angle of the blade was commonly 95 degrees and careful implantation ensured that length and alignment could be restored even in injuries with metaphyseal comminution. The major drawback of this design was that it required a large exposure. Furthermore, it could not be used in cases of osteoporosis and was unable to address the coronal plane fractures[5]. Later another implant was designed on the fixed angle concept with a sliding screw and was called the Dynamic Condylar Screw (DCS). This implant provided the ability to compress the intercondylar fragments. This design was adopted for the ease of application and smaller exposure. But it still did not address the coronal fracture limitation of the angled blade plate and also resulted in more bone loss upon insertion which made revisions difficult[24].
In general open reduction and internal fixation requires extensive dissection and can therefore lead to devascularization of fracture fragments, hence there is an increased risk of delayed union, non-union and infection[25]. To decrease these complications, concepts evolved applying indirect reduction techniques to restore length, rotation, and the mechanical axis without direct exposure of the fracture site and therefore maintaining the blood supply to the fracture region. Indirect reduction techniques were shown to have a biological advantage. Bolhofner et al. treated 57 patients with distal femoral fractures with conventional plates using only indirect reduction techniques. The average time to fracture union and full weight bearing was 10.7 weeks with no non-unions or hardware failures reported. These results could be achieved although 11 patients with open fractures were included[26].
Keeping in view the problems with open reduction and internal fixation and advantages of indirect reduction and preservation of vascularity of fracture fragments evolution occurred to wards minimally invasive surgery[27]. Studies have shown the preservation of soft tissue perforators and specially of the periosteal blood supply while using minimally invasive plate osteosynthesis (MIPO) techniques. Furthermore it decreased the incidence of infection, implant failure and led to earlier callus formation and decreased the need for subsequent bone grafting[20].

Locked Plate Fixation
With the development of different options in plate osteosynthesis, the locked pre-contoured plates have become widely used in orthopedics for many different fractures. Unlike the previously used (conventional) plates, which required friction between the plate bone interface for stability, the locking plates have mechanisms to secure the screw heads to the plate. This allows for the screws to be placed at different angles. The major advantage is that the plate doesn’t not have to be in contact with the bone. This allows for preservation of the periosteal blood supply[27].
Locking plate can be used in an open reduction and internal fixation procedure when the fracture is intraarticular, or with minimally invasive surgery using the less invasive stabilization system (LISS) in case of an extra-articular fracture or a simple non- displaced fracture[28]. One of the disadvantages of locking plate is the lack of interfragmentary compression with locking screws, this requires fixation of fragments with placement of lag screws prior to plate fixation. Extra care while insertion is required to prevent the interference of lag screws with the locked screws. There is a learning curve associated specially when using LISS in order to achieve union and prevent malunion and mechanical failure[29].
Although locking plates provide the biological advantage, at the same time they create rigid constructs which can suppress fracture union. As micro motion across the fracture site has been long known to cause stimulation of healing across the fracture fragments. Making the construct too rigid can affect the callus formation[30]. Choice of material also affects rigidity, stainless steel being more rigid, whereas titanium and associated alloys provide more flexibility[31].
In locking plates there are variations that exist based on the locking mechanism of the screws. One type has the unidirectional screws and the other has polyaxial screws. Polyaxaial system allows for more accurate screw placement, especially in the peri-articular regions. As a further development, a hybrid locking plate was made known as the Locked compression plate (LCP) which contains holes for both locking screws and cortrical screws. This system allowed for interfragmentry compression similar to a dynamic compression plate (DCP)[32].
In the literature there are many biomechanical studies that evaluate locking plate fixation systems. Beingessner et al. compared titanium plates to steel plates as well as unicortical to bicortial screws. They concluded that strength under torsion is reduced in titanium plates and strength is improved with bicortical screws. Whereas there is no difference for axial compression strains and plastic deformity[33].
Lujan et al. demonstrated that titanium plates favor the formation of callus due to elasticity in fixation material[31]. Stoeffel et al. when comparing LCP, DCP and Hybrid fixation showed that locking system results in less loss of reduction under axial compression with less plastic deformity and the DCP system provides better strength under torsion. The conclusion was that Hybrid fixation is preferred[34]. Wilkens et al. showed that the placement of polyaxial screws increased strength under axial compression and torsion and reduces deformation when loaded[35]. Freeman et al. compared load to failure, axial stiffness, and screw extraction torque for distal femoral locking plates with locked or cortical screws. Results demonstrated that locked fixation was superior in the osteoporotic model only[36]. Buckley et al. brought forward the issue of mal-rotation following MIPO if careful intra operative assessment is not done[37].
Recently, Tank et. al. concluded that early mechanical failure with the variable angle distal femoral locking plate is higher than traditional locking plates (LCP and LISS) for comminuted intraarticular distal femur fractures. They advised against use of this plate for metaphyseal fragmented distal femur fractures[38].
In a randomized prospective multicenter controlled trial comparing the Less Invasive Stabilization System (LISS) with the minimally invasive Dynamic Condylar Screw System (DCS) published by the Canadian orthopedic trauma society, they concluded that there was no statistically significant difference between LISS and DCS in terms of the number of fractures healed, time to union, or functional scores. Complications and revisions were more common in the LISS group. Only 52% of the LISS group healed without intervention by 12 months compared with 91% in the DCS group[39].

Interlocked IM nail
Intramedullary nailing is a good surgical option for distal femur fracture. It helps avoid extensive soft tissue dissection and minimize secondary damage of devascularization of fracture fragments[40]. This method has been recommended for non-comminuted fractures with intact distal femur to allow for interlocking. Both ante- and retrograde nailing have successfully been applied in the treatment of even comminuted and intraarticular fractures, but antegrade nailing has lost appeal[41]. Antegrade nailing has now been reserved for extraarticular fractures with fracture line > 5 cm proximal to the articular surface to allow for adequate distal fixation. The only advantage of antegrade nailing is the avoidance of an arthrotomy[32]. Retrograde nailing prevailed due to availability more options of distal fragment fixation. As with minimally invasive plate osteosynthesis, indirect fracture reduction and a minimally invasive approach were adopted for nailing as well.
Handolin et. al. reported in a series of 44 patients with 46 distal femur fractures with retrograde nailing, that the final union rate was 95% and a mean union time was 17.5 weeks. However, there were three patients with a loss of reduction and two of them had to undergo a re-operation[42]. Henry et al. compared open versus percutaneous reduction techniques for retrograde nailing of distal femoral fractures. The authors concluded improved post-operative knee function with decreased operative time, blood loss, bone grafting, and non-union rates without differences in malunion rate[43]. Hartin et. al. compared nailing vs plate fixation in fractures of the distal femur. They demonstrated high union rates in both groups without any statistically significant difference between groups. They observed that the deep infection rate, knee range of motion and healing time was better in the nailing group but was not statistically significant[44].
Disadvantages of the nailing technique may be a lack of alignment control, posterior angulation, perforation of joint cartilage and intra-articular distribution of reaming debris. Stability is limited if small diameter and short nails are inserted[45].

Arthroplasty
Complex peri-articular fractures can be a challenging to treat especially in the elderly. Even after achieving anatomic reconstruction and rehabilitation, posttraumatic arthritis and knee pain are complaints that commonly arise in addition to any baseline osteoarthritis. In younger patients the use of primary arthroplasty or distal femoral replacement may not be a viable option but in elderly it can be a valuable consideration, especially in the presence of primary osteoarthritis and comminution of the femoral condyles. Thin cortices, wide intramedullary canal and osteoporosis can make stable primary fixation difficulty to achieve, especially in the presence of multiple medical co-morbids[46]. Preservation of knee function and early weight bearing should be the objectives of management in the geriatric population[47]. Careful pre-operative planning and imaging is required to gauge the extent of injury. Radiography of the contralateral limb can act as a template in planning. Depending on the extent of the fracture and its pattern implant choice can be made. Primary total knee arthroplasty implants for non-comminuted fractures, revision TKA implants in the presence of metaphyseal extension, distal femoral replacement in cases of significant metaphyseal comminution and hinged implants where there is ligamentous instability. Addition of plates, lag screws, cables and cement can be done to achieve the required stability[48]. Choi et. al. performed TKA with the Medial Pivot prosthesis in 8 patients with ages between 65 and 89 who had primary osteoarthritis along with a distal femur fracture. They reported a mean time of 15 weeks to union and a good clinical result for all patients. They concluded that primary TKA can be considered as an option for the treatment of minimally comminuted distal femoral fractures in elderly patients who have advanced osteoarthritis of the knee with appropriate bone stock[49]. Appleton et. al. reported results of hinged total knee replacement in treatment of 54 fractures in 52 patients with a mean age of 82 years. Within the first year after implantation 22 of the 54 patients had died, six required further operation and two required revision surgery. They concluded that hinged total knee is useful alternative treatment to internal fixation in elderly patients and has a high probability of surviving as long as the patient[50]. Arthroplasty for peri articular fracture may not be seen as a paradigm shift but instead as a good alternative, for a certain patient group, that requires a strict indication and an experienced surgeon[51].

:Conclusion 
With the evolution of techniques and implants over time the treatment of the distal femoral fracture has improved. Although the advantage of one system of fixation over the other cannot be absolutely concluded, the main dependence of the surgical decision remains more on the fracture pattern and familiarity of the surgeon with the use of a certain implant and technique. The guiding principles for achieving good prognosis is meticulous surgical technique, preservation of fracture biology, restoration of articular surface and overall alignment of the limb. In case of geriatric fractures factors like long terms health and functional goals also need to be taken into consideration in planning treatment.


References

1. Kolmert L, Wulff K. Epidemiology and treatment of distal femoral fractures in adults. Acta orthopaedica Scandinavica. 1982;53(6):957-62.
2. Martinet O, Cordey J, Harder Y, Maier A, Buhler M, Barraud GE. The epidemiology of fractures of the distal femur. Injury. 2000;31 Suppl 3:C62-3.
3. Gillespie WJ, Walenkamp GH. Antibiotic prophylaxis for surgery for proximal femoral and other closed long bone fractures. The Cochrane database of systematic reviews. 2010(3):CD000244.
4. Nork SE, Segina DN, Aflatoon K, Barei DP, Henley MB, Holt S, et al. The association between supracondylar-intercondylar distal femoral fractures and coronal plane fractures. The Journal of bone and joint surgery American volume. 2005;87(3):564-9.
5. Gwathmey FW, Jr., Jones-Quaidoo SM, Kahler D, Hurwitz S, Cui Q. Distal femoral fractures: current concepts. The Journal of the American Academy of Orthopaedic Surgeons. 2010;18(10):597-607.
6. Al-Khateeb H, Peckham T, Ibrahim E. A novel technique in applying skeletal traction for long bone fractures. Annals of the Royal College of Surgeons of England. 2008;90(5):432-3.
7. Thomas TL, Meggitt BF. A comparative study of methods for treating fractures of the distal half of the femur. The Journal of bone and joint surgery British volume. 1981;63-B(1):3-6.
8. Butt MS, Krikler SJ, Ali MS. Displaced fractures of the distal femur in elderly patients. Operative versus non-operative treatment. The Journal of bone and joint surgery British volume. 1996;78(1):110-4.
9. Cass J, Sems SA. Operative versus nonoperative management of distal femur fracture in myelopathic, nonambulatory patients. Orthopedics. 2008;31(11):1091.
10. Foster TE, Healy WL. Operative management of distal femoral fractures. Orthopaedic review. 1991;20(11):962-9.
11. Jeffrey T, Jonna K, Patel D. Open Reduction And Internal Fixation Of Distal Femoral Fractures In Adults: Overview, Periprocedural Care, Technique 2016 [5 Jan. 2016]. Available from: http://emedicine.medscape.com/article/2000429-overview.
12. Florian Gebhard PK, Chris Oliver. Distal femur [30 Jan. 2016]. Available from: https://www2.aofoundation.org/wps/portal/surgery.
13. Krettek Christian DLH. Fractures of the Distal Femur. In: Browner BD, editor. Skeletal Trauma. Philadelphia, PA: Saunders; 1992. p. 1957-2011.
14. Liu F, Tao R, Cao Y, Wang Y, Zhou Z, Wang H, et al. The role of LISS (less invasive stabilisation system) in the treatment of peri-knee fractures. Injury. 2009;40(11):1187-94.
15. Shahcheraghi GH, Doroodchi HR. Supracondylar fracture of the femur: closed or open reduction? The Journal of trauma. 1993;34(4):499-502.
16. Papadopoulos EC, Parvizi J, Lai CH, Lewallen DG. Total knee arthroplasty following prior distal femoral fracture. The Knee. 2002;9(4):267-74.
17. Haidukewych GJ. Temporary external fixation for the management of complex intra- and periarticular fractures of the lower extremity. Journal of orthopaedic trauma. 2002;16(9):678-85.
18. Oh JK, Hwang JH, Sahu D, Jun SH. Complication rate and pitfalls of temporary bridging external fixator in periarticular communited fractures. Clinics in orthopedic surgery. 2011;3(1):62-8.
19. Parekh AA, Smith WR, Silva S, Agudelo JF, Williams AE, Hak D, et al. Treatment of distal femur and proximal tibia fractures with external fixation followed by planned conversion to internal fixation. The Journal of trauma. 2008;64(3):736-9.
20. Zlowodzki M, Bhandari M, Marek DJ, Cole PA, Kregor PJ. Operative treatment of acute distal femur fractures: systematic review of 2 comparative studies and 45 case series (1989 to 2005). Journal of orthopaedic trauma. 2006;20(5):366-71.
21. Arazi M, Memik R, Ogun TC, Yel M. Ilizarov external fixation for severely comminuted supracondylar and intercondylar fractures of the distal femur. The Journal of bone and joint surgery British volume. 2001;83(5):663-7.
22. Kumar P, Singh GK, Singh M, Bajraacharya S. Treatment of Gustilo grade III B supracondylar fractures of the femur with Ilizarov external fixation. Acta orthopaedica Belgica. 2006;72(3):332-6.
23. Schatzker J, Home G, Waddell J. The Toronto experience with the supracondylar fracture of the femur, 1966-72. Injury. 1974;6(2):113-28.
24. Sanders R, Regazzoni P, Ruedi TP. Treatment of Supracondylar-Intracondylar Fractures of the Femur Using the Dynamic Condylar Screw. Journal of orthopaedic trauma. 1989;3(3):214-22.
25. Stover M. Distal femoral fractures: current treatment, results and problems. Injury. 2001;32 Suppl 3:SC3-13.
26. Bolhofner BR, Carmen B, Clifford P. The results of open reduction and Internal fixation of distal femur fractures using a biologic (indirect) reduction technique. Journal of orthopaedic trauma. 1996;10(6):372-7.
27. Krettek C, Muller M, Miclau T. Evolution of minimally invasive plate osteosynthesis (MIPO) in the femur. Injury. 2001;32 Suppl 3:SC14-23.
28. Ehlinger M, Adam P, Abane L, Arlettaz Y, Bonnomet F. Minimally-invasive internal fixation of extra-articular distal femur fractures using a locking plate: tricks of the trade. Orthopaedics & traumatology, surgery & research : OTSR. 2011;97(2):201-5.
29. Ehlinger M, Adam P, Arlettaz Y, Moor BK, DiMarco A, Brinkert D, et al. Minimally-invasive fixation of distal extra-articular femur fractures with locking plates: limitations and failures. Orthopaedics & traumatology, surgery & research : OTSR. 2011;97(6):668-74.
30. Henderson CE, Lujan TJ, Kuhl LL, Bottlang M, Fitzpatrick DC, Marsh JL. 2010 mid-America Orthopaedic Association Physician in Training Award: healing complications are common after locked plating for distal femur fractures. Clinical orthopaedics and related research. 2011;469(6):1757-65.
31. Lujan TJ, Henderson CE, Madey SM, Fitzpatrick DC, Marsh JL, Bottlang M. Locked plating of distal femur fractures leads to inconsistent and asymmetric callus formation. Journal of orthopaedic trauma. 2010;24(3):156-62.
32. Crist BD, Della Rocca GJ, Murtha YM. Treatment of acute distal femur fractures. Orthopedics. 2008;31(7):681-90.
33. Beingessner D, Moon E, Barei D, Morshed S. Biomechanical analysis of the less invasive stabilization system for mechanically unstable fractures of the distal femur: comparison of titanium versus stainless steel and bicortical versus unicortical fixation. The Journal of trauma. 2011;71(3):620-4.
34. Stoffel K, Lorenz KU, Kuster MS. Biomechanical considerations in plate osteosynthesis: the effect of plate-to-bone compression with and without angular screw stability. Journal of orthopaedic trauma. 2007;21(6):362-8.
35. Wilkens KJ, Curtiss S, Lee MA. Polyaxial locking plate fixation in distal femur fractures: a biomechanical comparison. Journal of orthopaedic trauma. 2008;22(9):624-8.
36. Freeman AL, Tornetta P, 3rd, Schmidt A, Bechtold J, Ricci W, Fleming M. How much do locked screws add to the fixation of “hybrid” plate constructs in osteoporotic bone? Journal of orthopaedic trauma. 2010;24(3):163-9.
37. Buckley R, Mohanty K, Malish D. Lower limb malrotation following MIPO technique of distal femoral and proximal tibial fractures. Injury. 2011;42(2):194-9.
38. Tank JC, Schneider PS, Davis E, Galpin M, Prasarn ML, Choo AM, et al. Early Mechanical Failures of the Synthes Variable Angle Locking Distal Femur Plate. Journal of orthopaedic trauma. 2016;30(1):e7-e11.
39. Society COT. Are Locking Constructs in Distal Femoral Fractures Always Best? A Prospective Multicenter Randomized Controlled Trial Comparing the Less Invasive Stabilization System With the Minimally Invasive Dynamic Condylar Screw System. Journal of orthopaedic trauma. 2016;30(1):e1-e6.
40. Kim J, Kang SB, Nam K, Rhee SH, Won JW, Han HS. Retrograde intramedullary nailing for distal femur fracture with osteoporosis. Clinics in orthopedic surgery. 2012;4(4):307-12.
41. Butler MS, Brumback RJ, Ellison TS, Poka A, Bathon GH, Burgess AR. Interlocking intramedullary nailing for ipsilateral fractures of the femoral shaft and distal part of the femur. The Journal of bone and joint surgery American volume. 1991;73(10):1492-502.
42. Handolin L, Pajarinen J, Lindahl J, Hirvensalo E. Retrograde intramedullary nailing in distal femoral fractures–results in a series of 46 consecutive operations. Injury. 2004;35(5):517-22.
43. Henry SL. Supracondylar femur fractures treated percutaneously. Clinical orthopaedics and related research. 2000(375):51-9.
44. Hartin NL, Harris I, Hazratwala K. Retrograde nailing versus fixed-angle blade plating for supracondylar femoral fractures: a randomized controlled trial. ANZ journal of surgery. 2006;76(5):290-4.
45. Hierholzer C, von Rüden C, Pötzel T, Woltmann A, Bühren V. Outcome analysis of retrograde nailing and less invasive stabilization system in distal femoral fractures: A retrospective analysis. Indian Journal of Orthopaedics. 2011;45(3):243-50.
46. Bell KM, Johnstone AJ, Court-Brown CM, Hughes SP. Primary knee arthroplasty for distal femoral fractures in elderly patients. The Journal of bone and joint surgery British volume. 1992;74(3):400-2.
47. Mounasamy V, Cui Q, Brown TE, Saleh KJ, Mihalko WM. Primary total knee arthroplasty for a complex distal femur fracture in the elderly: a case report. European Journal of Orthopaedic Surgery & Traumatology. 2007;17(5):491-4.
48. Gangavalli AK, Nwachuku CO. Management of Distal Femur Fractures in Adults: An Overview of Options. The Orthopedic clinics of North America. 2016;47(1):85-96.
49. Choi NY, Sohn JM, Cho SG, Kim SC, In Y. Primary Total Knee Arthroplasty for Simple Distal Femoral Fractures in Elderly Patients with Knee Osteoarthritis. Knee surgery & related research. 2013;25(3):141-6.
50. Appleton P, Moran M, Houshian S, Robinson CM. Distal femoral fractures treated by hinged total knee replacement in elderly patients. The Journal of bone and joint surgery British volume. 2006;88(8):1065-70.
51. Thomas Haufe SF, Peter Müller, Johannes Plath, Edgar Mayr. The Role of a Primary Arthroplasty in the Treatment of Proximal Tibia Fractures in Orthogeriatric Patients. BioMed research international. 2016;2016:5.


How to Cite this article: Azam M. Management options and Decision making algorithm for Distal Femur fractures. Trauma International Jan-Apr 2016;2(1):7-12.

Dr. Mohsin e Azam

Dr. Mohsin e Azam


(Abstract)      (Full Text HTML)      (Download PDF)


Non Union Distal Femur Fracture: Causes and Management Options

Volume 2 | Issue 1 | Jan-April 2016 | Page 28-33|Puneet Maheshwari, Pramod Maheshwari


Author: Puneet Maheshwari[1], Pramod Maheshwari[1]

[1] Maheshwari Nursing Home, 163, Bhagat Singh Marg
Dewas M.P. 455001, India

Address of Correspondence
Dr. Puneet Maheshwari
Maheshwari Nursing Home, 163, Bhagat Singh Marg
Dewas M.P. 455001, India
Email: puneet1984@gmail.com


Abstract

Distal femur fractures are common but complex fractures and often are associated with complications. The cases of failure may be secondary to mechanical failure or biological failure. The current review offers overview of these complications and tips and tricks on how to manage these complications.
Keywords: Distal Femur Fractures, Complications, Surgical management


Introduction

Distal femoral fractures are a common orthopaedic problem in all age groups of patients with and incidence of about 37 per 100,000 person years.(1) Distal femoral fractures since a long time has been considered difficult to treat using traditional implants due to high failure rate and secondary varus collapse. (2)
Distal femoral fractures in young age group is most commonly due to high energy trauma while in older age group it is mostly associated with fall from height or walking along with osteoporosis of bones. Treatment of these fractures can be successfully done with variety of plates(3-6) and retrograde intramedullary nails(7-10).
Early studies of treating distal femoral fractures with locked plates reported excellent out come with non-union rates of 0-14% (mostly less than 6%) (4, 11-21).
However, with the recent data being analyzed and reported the non-union rates are now as high has 17-21% (11, 22, 23). This can be partially attributed to wider variety of fracture morphology and in patients prone for development of non-union.
Definition of Non-union
Non-union definition is based on three factors namely, duration of time since injury, characteristics of fracture on serial x-rays and lastly clinical parameters assessed by the treating surgeon.
Presently, US FDA defines non-union as fracture bone that has not completely healed in 9 months since injury and which has not shown any signs of healing over 3 consecutive months on serial x-rays.(24)
Multiple literatures indicates that optimal time for healing is in between 4 to 12 months, taking into account the type of bone fractured, nature of injury and quality of the soft tissues around the fractured bone. (25-33)
Along with these factors one more important factor is the physiologic capability of the individual in mounting a healing response.

Classification
Distal femur fractures (AO classification)
As per the AO classification the distal femur (33) can be classified in to 3 types namely extra-articular, partial articular and complete articular factures, which are further classified.
Distal femur fractures are:
Type 33A: extraarticular fracture
o A1: simple
o A2: metaphyseal wedge and/or fragmented wedge
o A3: metaphyseal complex
Type 33B: partial articular fracture
o B1: lateral condyle, sagittal
o B2: medial condyle, sagittal
o B3: frontal
Type 33C: complete articular fracture
o C1: articular simple, metaphyseal simple
o C2: articular simple, metaphyseal multifragmentary
o C3: articular multifragmentary

Weber and Cech have classified femoral non-union based on the viability or blood supply of the fracture into two broad groups viable and non-viable types. (24)
Viable type of non-union has an intact blood supply to the fracture area and thus body can mount a healing response to injury. Viable type is further divided into hypertrophic and oligo-trophic non-union.
Non-viable type of non-union is also called as atrophic or avascular non-union. The vascularity of the fracture area is absent and thus it cannot mount a healing response to injury. Type of non-union can be determined on plain x-ray in AP and lateral view or more accurately on bone scans.
Classification of non-union is important not just for documentation purposes but also for management point. In a viable non-union minimally invasive or non-invasive treatment can lead to union and thus saving the patient from another major surgical procedure.
These procedures would be give a questionable healing response in case of atrophic non-union and there the surgeon need to be more aggressive and has to plan a more extensive treatment.

Diagnosis and Evaluation
It is extremely important for the treating surgeon to timely diagnose, evaluate and document a non-union both for management as well as for legal purpose.
Diagnosis begins with a detailed history and examination of the patient and the affected limb. Patient-related risk factors like tobacco addiction, use of analgesics peripheral vascular disease, diabetes should be looked for and documented. Any clinical symptom that may point towards infection (occult/overt) like fever, malaise, night pain or history of wound healing problem should be elicited.
Physical examination should identify and document any deformity, pain over fracture area, soft tissue cover problems, increased local temperature, drainage, abnormal mobility, crepitation, and limb length discrepancy.
Radiological evaluation should be done with plain x-rays of the affected part in AP, lateral, and both oblique views (45 degrees internal and external views). In majority of patients this will get the accurate diagnosis of nonunion and its subtype. CT scan is a more accurate modality than plain x-rays in diagnosing the non-union.(34)
Infection should be cause in all cases of femoral non-union unless ruled out. Hence proper blood work-up is must which should include complete blood count, ESR and CRP. Deep tissue culture at the time of secondary surgery is the gold standard for diagnosis of infection. (35)

Causes and Risk factors
Main causes of distal femoral nonunion are
Inadequate fracture stabilization leading to motion at fracture site
Avascularity at the fracture ends – due to compound fractures, excessive stripping of soft tissue during surgery
Fracture gap
Infection
Patient related
Surgeon related

Inadequate fracture stabilization leads to micro and macro movements at the fracture site, which may result due to inadequate fixation at the time of primary surgery or due to implant failure.
Avascularity or diminished blood supply to the fracture end results due to compound injury (27), excessive stripping of soft tissue during surgery, comminuted fractures.(36) Decreased blood supply leads to a poor healing response and causes atrophic non-union.
Multiple literature supports that in fractures with significant comminution the soft tissue stripping is more and thus injuring the blood supply.(28)
Presence of gap at the fracture site either due to bone loss or during surgery (fracture fixed in distraction or debridement) also contribute to the occurrence of non-union.(29) Any gap present is usually bridged by the fracture callus, but when the body fails to bridge this gap non union results.
Infection can result as a complication of open injury or surgical treatment. Infection leads to formation of dead necrotic bone in the form of sequestrum, ingrowth of infected granulation tissue, osteolysis and motion at fracture site due to loosening of implant or implant failure.
Patient factors like age, smoking, tobacco use, chronic use of analgesics (NSAIDs), medical comorbidities and obesity to name a few can lead to non-union (22, 37).
Surgeon related factors include technical factors like plate length, screw density of plate, material of implant (titanium vs. stainless steel) and cortical reduction. Studies have shown that use of titanium implants significantly reduces the chances of non-union and thus need for a secondary surgical procedure (22).
In case of implant failure, the most important factor is the length of plate used. Shorter plates are prone to fail earlier than longer plates due to relatively lower fatigue properties because of mechanical disadvantage. Usually, a plate with 9 or more screws are is less liable to give away (37).

Treatment Options
Ultimate aim of the surgeon is to achieve osseous union without complications. Along with this it is important for the surgeon to correct any mal-alignment control infection if present, achieving sufficient muscle strength and rehabilitation.
Currently the accepted method of primary fixation of distal femur fractures is retrograde nail and lateral plating either lateral locked plates or fixed angle plates.

1.    Nail dynamisation
2.    Exchange nailing
3.    Plate osteosynthesis
4.    External fixation
5.    Adjuvant treatment options
a.    Electrical stimulation and ultrasound therapy
b.    Bone grafting
c.    Bone graft substitutes and biologic agents
d.    Bone marrow infiltration

Nail Dynamisation
Nail dynamisation is the term used when the statically locked nail is converted to a dynamically locked plate. This is accomplished by removal of screw/s adjacent to the dynamic hole of the nail.
Mechanism of healing with this technique is that it allows for a controlled axial instability of the bone and implant at the fracture site. This allows transfer of weight bearing forces to non-union site and promotes healing.(38)
Dynamisation is most effective when done at an early stage of non-union or delayed union as judged by serial radiographs. Optimal time for dynamisation is around 3-6 months of injury and primary treatment.(36)
Available literature suggests a success rate of about 50%. Nail dynamisation should be done is axially stable fractures like transverse or oblique fractures.
There are few complications associated with this technique namely shortening, implant failure. Thus a regular follow-up of the patients is a must.

Exchange Nailing
Exchange nailing refers to the surgical technique where an already present nail is removed and a larger diameter and stiffer nail is inserted after reaming. It is desirable that the second nail should be atleast 1-2mm larger than the earlier nail and the reaming should be done until the osseous chatter is heard.
This method provides both mechanical and biological stimulus for healing. A larger diameter and stiffer nail provides more mechanical stability along with increased working length of the implant thus decreasing the chances of implant failure. Biologically reaming causes deposition of fresh marrow material in the non-union site and stimulates periosteal reaction.(39) Union rates reported with this technique is variable with some studies showing union rates as high as 97%. (31, 32) Studies show that chances of non-union are more when reaming is not done.(40)

Plate Osteosynthesis
Plate osteosynthesis is the most common and gold standard treatment option in cases of distal femoral non-unions.(37) Plating offers increased mechanical stability to fracture specially in hypertrophic non-unions. Plate osteosynthesis (open reduction and internal fixation) provides an excellent opportunity of the surgeon to correct any associated deformities along with providing an excellent axial and torsional stability. Traditionally fixed angled 95 degree angled blade plate was used for distal femoral fractures, applied on the lateral aspect.(3, 41) The newer locked plates now available are the implant of choice in present scenario.(4, 5, 11-13, 15, 16, 18-20, 42, 43) With the use of compression holes excellent direct compression of the fracture site can be achieved.(44)
Few studies have reported union rates for distal femur non-unions with plate osteosynthesis around 91% to 100%.(45, 46) Even in case of poor bone stock and long standing non-unions the union rates are in range of 95 to 98% (31, 47)
This method of achieving union has its own risks and disadvantages. There is increased risk of infection, blood loss, increased tissue stripping, implant breakage, screw loosening etc. (6, 45, 47-50). Another disadvantage is that patients treated with plate osteosynthesis require strict immobilization for some duration, which may lead to joint stiffness and decreased range of motion of joints along with delay in starting rehabilitation.
Abdel-Aa et al (46) reported in their study that about 13% of patients treated with plate osteosynthesis for distal femoral non union required quadricepsplasty and knee arthrolysis within one year of surgery.
Another technique has been described in literature where both nail and plate are used simultaneously in achieving union. In this technique with an intramedullary implant in situ, a plate is fixed in compression mode at the fracture site. This method provides positive points of both the techniques in the form of early weight bearing, fracture fixed in direct compression thus chances of early union, improved torsional and rotational stability. If required bone grafting can also be done at same time to further increase the osteogenic potential and to fill up any bony defects if present. In studies using this method there has been a union rate of 100% within one year of surgery.(49, 51, 52)

External Fixation
Multiplanar (Ilizarov technique) and uniplanar external fixation for treatment of non-union of femur has been reported in literature with modest success (53, 54). Compression and distraction at non-union site has been demonstrated to show signs of healing(55). However, with the high complication rate (eg osteomyletitis, severe pain requiring opiod anagesics, septic arthritis, pin failure, joint stiffness etc.) use of external fixation for non-union healing is restricted to small number of patients. Along with this, the technical complexity and cost factor also restricts its use to tertiary level centres (54).

Adjuvant Treatment
These treatment options can be used as an isolated treatment option or as a supplementary treatment for achieving union.

Electrical Stimulation
Multiple studies show that mechanical forces, electrical forces, magnetic forces and ultrasound waves have variable level of effect on bone healing and growth (56-59). Electrical stimulation is thought to be effective non-invasive modality for promoting fracture healing and in treatment of non-unions.
Generation of electrical potentials around bone occurs when mechanical stress is applied(60, 61). Electronegative and electropositive potentials are generated with compression and tension respectively (62). It has been proven that in electronegative potential bone growth occurs and with electropositive potential bone is resorbed (63).
There are three techniques of electrical stimulation, namely, direct electric current, capacitive coupling and inductive coupling.
Direct electrical current is an invasive technique involving one or more cathode electrodes being implanted in the bone and an anode usually placed on the skin over the fracture site(64). In a case series by Brighton et al. (65) out of 168 fractures, 76% showed good bony union by 12 weeks of electrical stimulation therapy.
Capacitive coupling is a noninvasive technique where two electrodes are placed over the skin such that fracture site lies in between the electrodes. Here alternating current (AC) is used and an electric field is generated in and around the fracture site. It is a dose dependent technique whereby the greater electrical field leads to more osteoblastic cell response along with increased time of exposure leading to increased osteoblastic cell proliferation (66, 67).
Inductive coupling uses the principle of Pulsed Electromagnetic Field (PEMF) generation using specific device. The device is placed over the skin (non-invasive) over the fracture site. Passing current in the device generates the magnetic field. This magnetic field induces an electrical field, which leads to a bone healing response. This time-varying electrical field simulates normal response of osteoblastic cells to mechanical stimuli (68).

Bone Grafting, bone marrow aspirate and biologic agents

These procedures and materials can be used as an isolated or adjuvant treatment depending of the non-union type.
Autogenous bone grafts are considered gold standard for grafting procedures(69). Autologous bone grafting in past has got a bad review mainly due to donor site complications(70). With advances in harvesting techniques there is a renewed interest in this procedure(71-73).
Biologic agents like Bone Morphogenic Proteins (BMP) have been studied in detail both in animals and in humans and gives promising results.
Bone Morphogenic Proteins are part of the Transforming Growth Factor-Beta (TGF-B) superfamily and with a cascade sequence of events leads to bone healing via chondrogenesis, osteogenesis, angiogenesis and extracellular matrix remodeling (74). There are more than 20 BMP identified in humans. Studies in animals and in-vitro have shown BMP -2,4,6,7,9 have high osteogenic potential (75-78). Recombinant BMP-2 and 4 are in use clinically (74) but with questionable safety and efficacy profile(79-82).

Summary
Every surgically managed fracture is a race between bony union and implant/biological failure leading to non-union. Management of acute distal femur fracture with a nail or plate has good union rate or more than 90%. But when non-union occurs, it becomes a challenging task for the surgeon and patient both. It presents a significant mental, emotional and financial implication on the patient and his/her family.
Careful history taking and meticulous examination during routine follow-ups can help a surgeon to diagnose a delayed union or non-union in early stage and can modify the management as per the need to achieve bony union. Established non-union requires a well planned out management protocol to be decided before hand. Surgeon should decide the management plan (either non-invasive or invasive) on case-to-case basis to achieve union, correction of deformities. Surgeon should also take care of the patient modifiable risk factors like use of NSAIDs, smoking, medical co-morbidities and nutritional status of patient.

 


References

1. Zlowodzki M, Bhandari M, Marek DJ, Cole PA, Kregor PJ. Operative treatment of acute distal femur fractures: systematic review of 2 comparative studies and 45 case series (1989 to 2005). J Orthop Trauma. 2006;20(5):366-71.
2. Davison BL. Varus collapse of comminuted distal femur fractures after open reduction and internal fixation with a lateral condylar buttress plate. American journal of orthopedics. 2003;32(1):27-30.
3. Merchan ECR, Maestu PR, Blanco RP. Blade-Plating of Closed Displaced Supracondylar Fractures of the Distal Femur with the AO System. The Journal of Trauma: Injury, Infection, and Critical Care. 1992;32(2):174-8.
4. Haidukewych G. Results of Polyaxial Locked-Plate Fixation of Periarticular Fractures of the Knee. The Journal of Bone and Joint Surgery (American). 2007;89(3):614.
5. Kregor PJ, Stannard JA, Zlowodzki M, Cole PA. Treatment of Distal Femur Fractures Using the Less Invasive Stabilization System. Journal of Orthopaedic Trauma. 2004;18(8):509-20.
6. Vallier HA, Hennessey TA, Sontich JK, Patterson BM. Failure of LCP Condylar Plate Fixation in the Distal Part of the Femur: A Report of Six Cases. The Journal of Bone & Joint Surgery. 2006;88(4):846-53.
7. Thomson AB, Driver R, Kregor PJ, Obremskey WT. Long-Term Functional Outcomes After Intra-Articular Distal Femur Fractures: Orif Versus Retrograde Intramedullary Nailing. Orthopedics. 2008;31(8):748-50.
8. Handolin L, Pajarinen J, Lindahl J, Hirvensalo E. Retrograde intramedullary nailing in distal femoral fractures—results in a series of 46 consecutive operations. Injury. 2004;35(5):517-22.
9. Hartin NL, Harris I, Hazratwala K. RETROGRADE NAILING VERSUS FIXED-ANGLE BLADE PLATING FOR SUPRACONDYLAR FEMORAL FRACTURES: A RANDOMIZED CONTROLLED TRIAL. ANZ J Surg. 2006;76(5):290-4.
10. Singh SK, El-Gendy KA, Chikkamuniyappa C, Houshian S. The retrograde nail for distal femoral fractures in the elderly: High failure rate of the condyle screw and nut. Injury. 2006;37(10):1004-10.
11. Syed AA, Agarwal M, Giannoudis PV, Matthews SJE, Smith RM. Distal femoral fractures: long-term outcome following stabilisation with the LISS. Injury. 2004;35(6):599-607.
12. Ricci AR, Yue JJ, Taffet R, Catalano JB, DeFalco RA, Wilkens KJ. Less Invasive Stabilization System for treatment of distal femur fractures. American journal of orthopedics. 2004;33(5):250-5.
13. Fankhauser F, Gruber G, Schippinger G, Boldin C, Hofer H, Grechenig W, et al. Minimal-invasive treatment of distal femoral fractures with the LISS (Less Invasive Stabilization System) A prospective study of 30 fractures with a follow up of 20 months. Acta Orthopaedica. 2004;75(1):56-60.
14. Schutz M, Muller M, Kaab M, Haas N. Less invasive stabilization system (LISS) in the treatment of distal femoral fractures. Acta chirurgiae orthopaedicae et traumatologiae Cechoslovaca. 2003;70(2):74-82.
15. Schütz M, Müller M, Regazzoni P, Höntzsch D, Krettek C, Van der Werken C, et al. Use of the Less Invasive Stabilization System (LISS) in patients with distal femoral (AO33) fractures: a prospective multicenter study. Arch Orthop Trauma Surg. 2005;125(2):102-8.
16. Weight M, Collinge C. Early Results of the Less Invasive Stabilization System for Mechanically Unstable Fractures of the Distal Femur (AO/OTA Types A2, A3, C2, and C3). Journal of Orthopaedic Trauma. 2004;18(8):503-8.
17. Wong M-K, Leung F, Chow SP. Treatment of distal femoral fractures in the elderly using a less-invasive plating technique. International Orthopaedics (SICOT). 2005;29(2):117-20.
18. Ricci WM, Loftus T, Cox C, Borrelli J. Locked Plates Combined With Minimally Invasive Insertion Technique for the Treatment of Periprosthetic Supracondylar Femur Fractures Above a Total Knee Arthroplasty. Journal of Orthopaedic Trauma. 2006;20(3):190-6.
19. Kolb W, Guhlmann H, Windisch C, Marx F, Kolb K, Koller H. Fixation of Distal Femoral Fractures With the Less Invasive Stabilization System: A Minimally Invasive Treatment With Locked Fixed-Angle Screws. The Journal of Trauma: Injury, Infection, and Critical Care. 2008;65(6):1425-34.
20. Kao FC, Tu YK, Su JY, Hsu KY, Wu CH, Chou MC. Treatment of Distal Femoral Fracture by Minimally Invasive Percutaneous Plate Osteosynthesis: Comparison Between the Dynamic Condylar Screw and the Less Invasive Stabilization System. The Journal of Trauma: Injury, Infection, and Critical Care. 2009;67(4):719-26.
21. Fulkerson E, Tejwani N, Stuchin S, Egol K. Management of periprosthetic femur fractures with a first generation locking plate. Injury. 2007;38(8):965-72.
22. Rodriguez EK, Boulton C, Weaver MJ, Herder LM, Morgan JH, Chacko AT, et al. Predictive factors of distal femoral fracture nonunion after lateral locked plating: a retrospective multicenter case-control study of 283 fractures. Injury. 2014;45(3):554-9.
23. Henderson CE, Kuhl LL, Fitzpatrick DC, Marsh JL. Locking Plates for Distal Femur Fractures: Is There a Problem With Fracture Healing? Journal of Orthopaedic Trauma. 2011;25:S8-S14.
24. Brinker MR. Nonunions: Evaluation and Treatment. In: Trafton PG, editor. Skeletal Trauma: Basic Science, Management, and Reconstruction. 3 ed. Philadelphia: W.B. Saunders; 2003. p. 507-604.
25. Furlong AJ, Giannoudis PV, DeBoer P, Matthews SJ, MacDonald DA, Smith RM. Exchange nailing for femoral shaft aseptic non-union. Injury. 1999;30(4):245-9.
26. Giannoudis PV, MacDonald DA, Matthews SJ, Smith RM, Furlong AJ, De Boer P. Nonunion of the femoral diaphysis. The Journal of Bone and Joint Surgery. 2000;82(5):655-8.
27. Malik MH, Harwood P, Diggle P, Khan SA. Factors affecting rates of infection and nonunion in intramedullary nailing. The Journal of bone and joint surgery British volume. 2004;86(4):556-60.
28. Noumi T, Yokoyama K, Ohtsuka H, Nakamura K, Itoman M. Intramedullary nailing for open fractures of the femoral shaft: evaluation of contributing factors on deep infection and nonunion using multivariate analysis. Injury. 2005;36(9):1085-93.
29. Pihlajamäki HK, Salminen ST, Böstman OM. The Treatment of Nonunions Following Intramedullary Nailing of Femoral Shaft Fractures. Journal of Orthopaedic Trauma. 2002;16(6):394-402.
30. Wu C-C. The Effect of Dynamization on Slowing the Healing of Femur Shaft Fractures after Interlocking Nailing. The Journal of Trauma: Injury, Infection, and Critical Care. 1997;43(2):263-7.
31. Kempf I, Grosse A, Rigaut P. The Treatment of Noninfected Pseudarthrosis of the Femur and Tibia with Locked Intramedullary Nailing. Clinical Orthopaedics and Related Research. 1986;&NA;(212):142???54.
32. Webb LX, Winquist RA, Hansen ST. Intramedullary Nailing and Reaming for Delayed Union or Nonunion of the Femoral Shaft. Clinical Orthopaedics and Related Research. 1986;&NA;(212):133???41.
33. Weresh MJ, Hakanson R, Stover MD, Sims SH, Kellam JF, Bosse MJ. Failure of Exchange Reamed Intramedullary Nails for Ununited Femoral Shaft Fractures. Journal of Orthopaedic Trauma. 2000;14(5):335-8.
34. Bhattacharyya T, Bouchard KA, Phadke A, Meigs JB, Kassarjian A, Salamipour H. The Accuracy of Computed Tomography for the Diagnosis of Tibial Nonunion. The Journal of Bone & Joint Surgery. 2006;88(4):692-7.
35. Gristina AG, Naylor PT, Webb LX. Molecular mechanisms in musculoskeletal sepsis: the race for the surface. Instructional course lectures. 1990;39:471-82.
36. Lynch JR, Taitsman LA, Barei DP, Nork SE. Femoral Nonunion: Risk Factors and Treatment Options. J Am Acad Orthop Surg. 2008;16(2):88-97.
37. Ricci WM, Streubel PN, Morshed S, Collinge CA, Nork SE, Gardner MJ. Risk Factors for Failure of Locked Plate Fixation of Distal Femur Fractures. Journal of Orthopaedic Trauma. 2014;28(2):83-9.
38. Yokota H, Tanaka SM. Osteogenic potentials with joint-loading modality. J Bone Miner Metab. 2005;23(4):302-8.
39. Reichert ILH, McCarthy ID, Hughes SPF. The Acute Hemodynamic Response to Intramedullary Reaming of the Intact and Osteotomized Tibia: An Experimental Investigation with Radiolabeled Microspheres in the Ovine Tibia. Techniques in Orthopaedics. 1996;11(1):28-34.
40. Society COT. Nonunion following intramedullary nailing of the femur with and without reaming: Results of amulticenter randomized clinical trial. The Journal of bone and joint surgery American volume. 2003;85-A(11):2093-6.
41. Bolhofner BR, Carmen B, Clifford P. The Results of Open Reduction and Internal Fixation of Distal Femur Fractures Using a Biologic (Indirect) Reduction Technique. Journal of Orthopaedic Trauma. 1996;10(6):372-7.
42. Kayali C, Agus H, Turgut A. Successful results of minimally invasive surgery for comminuted supracondylar femoral fractures with LISS: comparative study of multiply injured and isolated femoral fractures. Journal of Orthopaedic Science. 2007;12(5):458-65.
43. Liu F, Tao R, Cao Y, Wang Y, Zhou Z, Wang H, et al. The role of LISS (less invasive stabilisation system) in the treatment of peri-knee fractures. Injury. 2009;40(11):1187-94.
44. Meyer RW, Plaxton NA, Postak PD, Gilmore A, Froimson MI, Greenwald AS. Mechanical Comparison of a Distal Femoral Side Plate and a Retrograde Intramedullary Nail. Journal of Orthopaedic Trauma. 2000;14(6):398-404.
45. Bellabarba C, Ricci WM, Bolhofner BR. Results of Indirect Reduction and Plating of Femoral Shaft Nonunions After Intramedullary Nailing. Journal of Orthopaedic Trauma. 2001;15(4):254-63.
46. Abdel-Aa AM, Farouk OA, Elsayed A, Said HG. The Use of a Locked Plate in the Treatment of Ununited Femoral Shaft Fractures. The Journal of Trauma: Injury, Infection, and Critical Care. 2004;57(4):832-6.
47. Ring D, Jupiter JB, Sanders RA, Quintero J, Santoro VM, Ganz R, et al. Complex Nonunion Of Fractures Of The Femoral Shaft Treated By Wave-plate Osteosynthesis. The Journal of Bone and Joint Surgery. 1997;79(2):289-94.
48. Rozbruch RS, M??ller U, Gautier E, Ganz R. The Evolution of Femoral Shaft Plating Technique. Clinical Orthopaedics and Related Research. 1998;354:195-208.
49. Ueng SWN, Chao E-K, Lee S-S, Shih C-H. Augmentative Plate Fixation for the Management of Femoral Nonunion after Intramedullary Nailing. The Journal of Trauma: Injury, Infection, and Critical Care. 1997;43(4):640-4.
50. Cove JA, Lhowe DW, Jupiter JB, Siliski JM. The Management of Femoral Diaphyseal Nonunions. Journal of Orthopaedic Trauma. 1997;11(7):513-20.
51. Ueng SWN, Shih C-H. Augmentative Plate Fixation for the Management of Femoral Nonunion with Broken Interlocking Nail. The Journal of Trauma: Injury, Infection, and Critical Care. 1998;45(4):747-52.
52. Choi YS, Kim KS. Plate augmentation leaving the nail in situ and bone grafting for non-union of femoral shaft fractures. Int Orthop. 2005;29(5):287-90.
53. Brinker MR, O’Connor DP. Ilizarov Compression Over a Nail for Aseptic Femoral Nonunions That Have Failed Exchange Nailing: A Report of Five Cases. Journal of Orthopaedic Trauma. 2003;17(10):668-76.
54. Patil S. Management of complex tibial and femoral nonunion using the Ilizarov technique, and its cost implications. Journal of Bone and Joint Surgery – British Volume. 2006;88-B(7):928-32.
55. Inan M, Karaoglu S, Cilli F, Turk CY, Harma A. Treatment of Femoral Nonunions by Using Cyclic Compression and Distraction. Clinical Orthopaedics and Related Research. 2005;&NA;(436):222-8.
56. Fukada E, Yasuda I. On the Piezoelectric Effect of Bone. Journal of the Physical Society of Japan. 1957;12(10):1158-62.
57. Duarte LR. The stimulation of bone growth by ultrasound. Archives of Orthopaedic and Traumatic Surgery. 1983;101(3):153-9.
58. Kenwright AGaJ. The influence of induced micromovement upon the healing of experimental tibial fractures. Bone & Joint Journal. 1985;67-B:650-5.
59. Valchanou VD, Michailov P. High energy shock waves in the treatment of delayed and nonunion of fractures. International Orthopaedics. 1991;15(3).
60. Becker RO, Bassett, C.A.L., Bachman, C.H. Bioelectric factors controlling bone structure. In: Frost H, editor. Bone biodynamics. Boston: Little, Brown & Company; 1964. p. 209–32.
61. Yasuda I. Fundamental aspects of fracture treatment. J Kyoto Med SOC. 1953;4:392.
62. Otter M, Goheen S, Williams WS. Streaming potentials in chemically modified bone. Journal of Orthopaedic Research. 1988;6(3):346-59.
63. Rubinacci A, Black J, Brighton CT, Friedenberg ZB. Changes in bioelectric potentials on bone associated with direct current stimulation of osteogenesis. Journal of Orthopaedic Research. 1988;6(3):335-45.
64. Black J. Electrical Stimulation: Its Role in Growth, Repair, and Remodeling of the Musculoskeletal
System. New York: Praeger; 1987.
65. Brighton CT, Black J, Friedenberg ZB, Esterhai JL, Day LJ, Connolly JF. A multicenter study of the treatment of non-union with constant direct current. The Journal of bone and joint surgery American volume. 1981;63(1):2-13.
66. Korenstein R, Somjen D, Fischler H, Binderman I. Capacitative pulsed electric stimulation of bone cells. Induction of cyclic-AMP changes and DNA synthesis. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research. 1984;803(4):302-7.
67. Wang Z. Up-Regulation of Bone Morphogenetic Proteins in Cultured Murine Bone Cells with Use of Specific Electric Fields. The Journal of Bone and Joint Surgery (American). 2006;88(5):1053.
68. Nelson FR, Brighton CT, Ryaby J, Simon BJ, Nielson JH, Lorich DG, et al. Use of physical forces in bone healing. J Am Acad Orthop Surg. 2003;11(5):344-54.
69. Giannoudis PV, Dinopoulos HT. Autologous bone graft: when shall we add growth factors? Foot Ankle Clin. 2010;15(4):597-609.
70. Oakley MJ, Smith WR, Morgan SJ, Ziran NM, Ziran BH. Repetitive posterior iliac crest autograft harvest resulting in an unstable pelvic fracture and infected non-union: case report and review of the literature. Patient Saf Surg. 2007;1(1):6.
71. Newman JT, Stahel PF, Smith WR, Resende GV, Hak DJ, Morgan SJ. A New Minimally Invasive Technique for Large Volume Bone Graft Harvest for Treatment of Fracture Nonunions. Orthopedics. 2008;31(3):257-61.
72. Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV. Complications following autologous bone graft harvesting from the iliac crest and using the RIA: A systematic review. Injury. 2011;42:S3-S15.
73. Herscovici JD, Scaduto JM. Use of the reamer-irrigator-aspirator technique to obtain autograft for ankle and hindfoot arthrodesis. The bone & joint journal. 2012;94-B(1):75-9.
74. Lissenberg-Thunnissen SN, de Gorter DJ, Sier CF, Schipper IB. Use and efficacy of bone morphogenetic proteins in fracture healing. Int Orthop. 2011;35(9):1271-80.
75. Xiang L, Liang C, Zhen-Yong K, Liang-Jun Y, Zhong-Liang D. BMP9-induced osteogenetic differentiation and bone formation of muscle-derived stem cells. J Biomed Biotechnol. 2012;2012:610952.
76. Kang Q, Sun MH, Cheng H, Peng Y, Montag AG, Deyrup AT, et al. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther. 2004;11(17):1312-20.
77. Luu HH, Song WX, Luo X, Manning D, Luo J, Deng ZL, et al. Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2007;25(5):665-77.
78. Cheng H, Jiang W, Phillips FM, Haydon RC, Peng Y, Zhou L, et al. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). Urologic Oncology: Seminars and Original Investigations. 2004;22(1):79-80.
79. Burks MV, Nair L. Long-Term Effects of Bone Morphogenetic Protein- Based Treatments in Humans. Journal of Long-Term Effects of Medical Implants. 2010;20(4):277-93.
80. Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011;11(6):471-91.
81. Carragee EJ, Ghanayem AJ, Weiner BK, Rothman DJ, Bono CM. A challenge to integrity in spine publications: years of living dangerously with the promotion of bone growth factors. Spine J. 2011;11(6):463-8.
82. Mroz TE, Wang JC, Hashimoto R, Norvell DC. Complications related to osteobiologics use in spine surgery: a systematic review. Spine (Phila Pa 1976). 2010;35(9 Suppl):S86-104.


How to Cite this article: Maheshwari P, Maheshwari P. Non Union Distal Femur Fracture: Causes and Management Options. Trauma International Jan-Apr 2016;1(2):28-33.

Dr. Pramod Maheshwari

Dr. Pramod Maheshwari

Dr. Puneet Maheshwari

Dr. Puneet Maheshwari

 


(Abstract) (Full Text HTML) (Download PDF)